Synthesis of Aramids by Polycondensation of Aromatic Dicarboxylic Acids with Aromatic Diamines Containing Ether Linkages

Yu SHOJI, Katsuhisa MIZOGUCHI, and Mitsuru UEDA*

Department of Organic and Polymeric Materials, Graduate School of Science and Engineering, Tokyo Institute of Technology, 2-12-1, O-okayama, Meguro-ku, Tokyo 152-8552, Japan

Supporting Information

Syntheses and characterization of model compound 3 and polyamide 6ab’.

Measurement. FT-IR spectra were measured on a Horiba FT-720 spectrometer. 1H and 13C NMR spectra were recorded with a Bruker DPX300S spectrometer. Number- and weight-average molecular weights (M_n and M_w) were measured by gel permeation chromatography (GPC) on a JASCO PU-2080Plus system equipped with two polystyrene gel column (TSKGELs ; GMH$_{110}$-M). N,N-Dimethylformamide (DMF) containing 0.01 M LiBr was used as a solvent at a flow rate of 1.0 mL min$^{-1}$. M_n and M_w were calibrated by standard polystyrene samples. Thermal analysis was performed on a Seiko EXSTAR 6000 TG/DTA 6300 thermal analyzer at a heating rate of 10 °C/min for thermogravimetry (TG) and SEIKO INSTRUMENTS Inc. EXSTAR6000 DSC6200 thermal analyzer at a heating rate of 10 °C/min for differential scanning calorimetry (DSC).

Materials. 4,4’-hexafluoroisopropylidenebis(p-phenyleneoxy)dianiline (5b), 4,4’-(m-phenylenedioxy)dianiline (5b’) and 3,4’-oxydianiline (5b’’) were purchased from Tokyo Chemical Industry Co. 4,4’-hexafluoroisopropylidene-bis(benzoic acid) (4a) purchased from Aldrich Chem. Co., was recrystallized from acetonitrile prior to use. 4,4’-(m-phenylenedioxy) -bis(benzoic acid) (4a’) 1 was synthesized according to the literature. Isophtalic acid (4a’’) purchased from Tokyo Chemical Industry Co., was recrystallized from ethanol prior to use. The other reagents and solvents were obtained commercially and used as received.

Model reaction

Benzoic acid (0.368 g, 3.01 mmol) and 4,4’-oxydianiline (0.204 g, 1.02 mmol) were added to a Pyrex
test tube (15 mL) equipped with a nitrogen gas inlet and outlet tubes. The mixture was heated in oil bath at 200 or 230 °C under a nitrogen atmosphere for 5 h, and then allowed to cool to room temperature. The solids were dissolved in DMF (3 mL), and the resulting solution was poured into a 3% NaHCO₃ solution (300 mL) to remove the excess of benzoic acid. The precipitate was collected, dried in vacuo at 120 °C for 1 d. The yield of model compound was 0.402 g (97%): m.p. 266.6-267.6 (lit. 2 266-267 °C). IR (KBr), ν (cm⁻¹): 3325 (-NH), 1651 (C=O). ¹H NMR (DMSO, δ, ppm, 40 °C): 10.2 (s, N-H, 1H), 7.96 (d, J=6.9, ArH, 4H), 7.79 (d, J=9.0, ArH, 4H), 7.62-7.50 (m, ArH, 6H), 7.02 (d, J=9.0, ArH, 4H).

Synthesis of polyamide 6ab’

In a 15 mL Pyrex tube equipped with a stirring bar and nitrogen gas inlet and outlet tubes, were placed 4,4’-hexafluoroisopropylidenebis(benzoic acid) (monomer 4a; 0.196 g, 0.50 mmol) and 4,4’-(m-phenylenedioxy)dianiline (monomer 5b’; 0.146 g, 0.50 mmol) under a stream of nitrogen. The mixture was gradually heated up to 130 °C and kept at this temperature for 0.5 h, heated at 170 °C for 0.5 h, 200 °C for 2 h, and 300 °C for 7 h, respectively, with a heating mantle, and then allowed to cool to room temperature. The solid was dissolved in NMP (3 mL), and the solution was poured into methanol (300 mL). The polymer was collected, and dried in vacuo at 120 °C for 1 d. The yield of polymer 6ab’ was 0.257 g (76%). IR (KBr), ν (cm⁻¹): 3429 (-NH), 1658 (C=O). ¹H NMR (DMSO, δ, ppm, 40 °C) : 10.4 (s, N-H, 1H), 8.03 (d, J=8.7, ArH, 4H), 7.79 (d, J=9.0, ArH, 4H), 7.51 (d, J=8.4, ArH, 4H), 7.34 (t, J=8.4, ArH, 1H), 7.08 (d, J=9.0, ArH, 4H), 6.70 (dd, J=8.3, 2.1, ArH, 2H), 6.60 (t, J=2.7, ArH, 1H). Anal. Calcd. For C₃₅H₂₂N₂ : C, 64.82 ; H, 3.42 ; N, 4.32. Found: C, 64.56 ; H, 3.77 ; N, 4.22.
polyamide 6ab

\[
\text{[Chemical structure of polyamide 6ab]}
\]

Wavenumbers [cm\(^{-1}\)]

Transmittance [%]

polyamide 6a’b’

\[
\text{[Chemical structure of polyamide 6a’b’]}
\]

Wavenumbers [cm\(^{-1}\)]

Transmittance [%]
polyamide $6a^\prime b'$

CC N

H

O

OO

ON

H

a b c d e f g h i

References
