Metal Complex-Bearing Core-Functionalized Microgel Star Polymers: High Selectivity and Recycles of Catalysts

¹T. Terashima, ¹T. Ando, ¹M. Sawamoto, and ²M. Kamigaito

¹Department of Polymer Chemistry, Kyoto University ²Department of Applied Chemistry, Nagoya University ¹Katsuka, Nishikyo-ku, Kyoto 615-8510, Japan

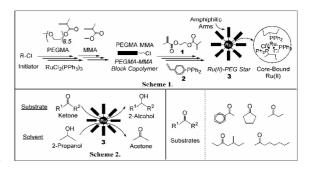
¹Phone/Fax: +81-75-383-2603; E-mail: terashima@living.polym.kyoto-u. ac.jp

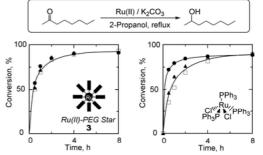
Introduction

Recently we have first achieved the direct introduction of polymerization catalysts into the microgel core of star polymers via Ru(II)-mediated living radical polymerization¹⁾. The star polymer catalysts with PMMA and other arms efficiently catalyzed the oxidation of 2-alcohols and the reduction of ketones²⁾, which showed the unique substrate selectivity different from RuCl₂(PPh₃)₃. In particular, the star polymers with PEG-arms have attracted much interesting because of the amphiphilic property. Furthermore, the star polymer catalysts are expected to enable higher stability of the bound Ru(II) complexes encapsulated in the microgel core and thus protected by surrounding arm chains.

In this paper, we report the synthesis of PEGMA-armed star polymers with Ru(II) core to be employed for reduction of ketones. Recycle of the catalysts was also examined.

Results and Discussion


PEG-armed, amphiphilic, and thermosensitive star polymers (3; Scheme 1) with core-bound Ru(II) complexes were synthesized by the linking reaction of PEGMA living polymers with a dimethacrylate (1) and a phosphine-bearing styrene (2) via Ru-catalyzed living radical polymerization. The obtained star polymers (red-brown; >76% yield) carried 24 µmol core Ru/g-polymer (35 % inclusion of the catalyst); Mw = 772K; 19 arms.


The star polymers (3) efficiently catalyzed the reduction of various ketones into secalcohols in 2-propanol (Scheme 2). Especially, 3 could be reused at least three times in the reduction of 2-octanone without any decline in and activity loss of core-bound (Figure 1). With RuCl₂(PPh₃)₃, however, a gradual decrease of catalytic activity was observed. In aqueous/2-propanol dispersed mixtures at 100 °C, 3 also catalyzed the reduction of 2-octanone, faster than RuCl₂(PPh₃)₃ did. reaction involved a thermoregulated phasetransfer catalysis where 3 moves from the organic reaction phase (100 °C) into the aqueous phase (25 °C; work-up); thus the recycles of 3 could be also achieved.

Furthermore, the removal of the metal complexes from the core and the reintroduction of other metal complexes were also examined.

Reference

1) Terashima, T. et al. J. Am. Chem. Soc. 2003, 25, 5288.

Figure 1. Recycle of Ru(II)-PEG star catalysts in reduction of 2-octanone. 2-octanone/Ru_{Star}/ K_2 CO₃ = 15/0.015/1.5 mmol in 15 mL 2-propanol at 100 °C. Catalyst cycles: 1st(J), 2 nd (G), 3rd (H).

2) Terashima, T. et al. Polym. Prepr. Jpn. 2003, 52, 154; Polym. Prepr. Jpn. 2004, 53, 2604.

IPC2018 Preprint Manuscript Sample.
Copyright: The Society of Polymer Science, Japan;
Source: Preprints, The 8th International Polymer Conference 2005,
page 310; permission granted by the authors.