高分子 Vol.72 No.6 |
>> Japanese | >> English |
特集 重合反応の解明と精密構造制御への取り組み
|
展望 COVER STORY: Highlight Reviews |
繰り返し構造をもつ天然中分子の迅速合成 Rapid Synthesis of Middle-Size Biomolecules Comprising of a Repeating Structure |
小山 靖人 Yasuhito KOYAMA |
<要旨> 中分子サイズの天然物の合成には通常、多段階合成が必要となる。中分子の物性評価や実用化のために、省力的な大量合成法の開発が求められている。ここでは、天然中分子の繰り返し構造のための迅速・簡便な合成手法を紹介する。低分子と高分子の狭間にある中分子の合成法を眺め、精密高分子合成の今後の役割について考える。 Keywords: Middle-Size Biomolecules / Polypeptide / Deoxypropionate / Poly(Cyclic Ether) / Oligosaccharide / Glycoside / Terpenoid / Polyketide |
ページトップへ▲ |
芳香族アセチレン類の重合反応の新展開 Advances in Polymerization of Aromatic Acetylenes |
谷口 剛史・西村 達也・前田 勝浩 Tsuyoshi TANIGUCHI, Tatsuya NISHIMURA, Katsuhiro MAEDA |
<要旨> 近年、ポリアセチレン類を基盤とした材料開発に向けた研究が活発に行われているが、ポリアセチレン類の高度な機能化を実現するためには、アセチレン類の精密重合法の開発が不可欠である。本稿では、芳香族アセチレン類の重合反応に焦点を当て、これまでの問題点と、それらを解決するべく進められている最近の研究について紹介する。 Keywords: Polyacetylenes / Polymerization / Living Polymerization / Polymerization Mechanism / Rhodium / Tungsten / Tantalum |
ページトップへ▲ |
中分子の精密合成:電気で作るアミド結合 Organic Synthesis of Medium Molecules: Electrochemical Amide Bond Formations |
岡田 洋平 Yohei OKADA |
<要旨> 低分子と高分子の間に位置する「中分子」サイズの化合物群が次世代の医薬品候補として大きな注目を集めている。生体高分子の「有機合成」はきわめて困難であるが、中分子サイズであればどうだろうか。本稿ではとくにペプチドに焦点を当てて、近年の有機合成研究について簡単に紹介する。筆者の個人的な見解が多く含まれていることにも留意されたい。 Keywords: Organic Synthesis / Medium Molecule / Electrochemistry / Amide Bond Formation / Peptide / Liquid Phase / Soluble Tag |
ページトップへ▲ |
トピックス COVER STORY: Topics and Products |
可逆的連鎖移動に基づくカチオン重合を用いた分子量と立体構造の同時制御 Simultaneous Control of Molecular Weights and Stereo-Strctures by Degenerative Chain-Transfer Cationic Polymerizations |
内山 峰人 Mineto UCHIYAMA |
<要旨> Recently, we developed novel living cationic polymerizations that proceed via degenerative chain-transfer (DT) mechanisms using thioesters and thioethers as reversible chain-transfer agents in the presence of various cationic initiators. This article describes our recent research about the simultaneous control of molecular weight and stereo-structures using cationic reversible addition-fragmanetation chain transfer (RAFT) or DT polymerizations. Stereospecific cationic RAFT polymerization was achieved by combining cationic RAFT polymerization with thioesters and stereospecific cationic polymerization of bulky vinyl ethers with Lewis acid catalysts. The molecular weight was controlled by the RAFT process whereas the tacticity was controlled by stereospecific propagation based on the steric hindrance of bulky side groups and counteranions derived from the Lewis acid catalyst. In addition, the cationic DT process is also applicable to asymmetric cationic polymerization of benzofuran by combination of Lewis acid catalysts and chiral additives to achieve the dual control of molecular weight and optical activity of the resulting polymers. Keywords: Living Polymerization / Cationic Polymerization / Degenerative Chain-Transfer / RAFT Polymerization / Stereospecific Polymerization / Poly(vinyl Alcohol) / Asymmetric Polymerization / Benzofuran |
ページトップへ▲ |
可視光を外部刺激とするポリマー合成と光触媒の設計 Design of Photocatalysts for Polymer Synthesis Using Visible-Light as External Stimulus |
稲垣 昭子 Akiko INAGAKI |
<要旨> In the field of homogeneous catalysis, various efficient photoredox reactions have been developed, in which mainly ruthenium and iridium visible-light sensitizers play the key roles in the catalysis to promote single electron transfer to generate reactive radical species under mild conditions. Apart from these reactions, utilization of the excited-state of the catalyst itself may lead to new type light-controlled reactions. In order to realize such reactions, precise design of the photocatalysts is inevitable for the efficient formation of the desired excited-state. Our intensive studies on developing new visible-light driven catalysts are described here. Utilization of a bichromophore unit in order to extend the excited-state lifetime was successful to realize high reactivity of the Ir-Pd catalyst toward styrene polymerization. Visible-light irradiation intensively drives the polymerization because of producing a highly active excited state for monomer insertion. The character of the catalyst can be used to tune the copolymerization reaction to yield copolymers with different co-monomer content and glass-transition temperature. Keywords: Visible-Light Energy / Photocatalyst / Dinuclear Catalyst / Photosensitizer / Bichromophore / Polymerization / Excited-State Lifetime / Ruthenium / Iridium / Copper Photosensitizers |
ページトップへ▲ |
配列制御オリゴシロキサンのワンポット合成 One-Pot Synthesis of Sequence-Controlled Oligosiloxanes |
松本 和弘 Kazuhiro MATSUMOTO |
<要旨> A wide variety of sequence-defined oligosiloxanes can be synthesized by one-pot controlled iteration of B(C6F5)3-catalyzed dehydrocarbonative condensation of alkoxysilanes with hydrosilanes and hydrosilylation of carbonyl compounds. Keywords: Oligosiloxanes / Siloxanes / One-Pot Synthesis / Controlled Iteration |
ページトップへ▲ |
グローイングポリマー Polymer Science and I: A Personal Account |
手数で勝負 Number of Moves |
村山 恵司 Keiji MURAYAMA |
<要旨> I believe that the most important point for research is the number of experiments carried out. I performed a lot of experiments as a student, which resulted in successful development of novel Xeno Nucleic Acids. No one can accurately predict the results. The number of experiments promises the success. |
ページトップへ▲ |
高分子科学最近の進歩 Front-Line Polymer Science |
多成分超分子ナノバイオ材料 ~分子集合の直交性・エネルギー散逸挙動~ Multicomponent Supramolecular Nanobiomaterials |
東 小百合・池田 将 Sayuri L. HIGASHI, Masato IKEDA |
<要旨> Biomolecular assemblies inside living cells have inspired us to design self-assembling molecules capable of showing orthogonal self-assembly and/or stimuli-responsive and energy dissipative self-assembling phenomena, which may lead to the construction of intelligent supramolecular nanobiomaterials as well as artificial cells. Here, we highlight recent papers including those from our group, in which research on the two topics, i.e., orthogonal/dissipative self-assembly, with synthetic self-assembling molecules have been conducted. Keywords: Supramolecular Materials / Self-Assembly / Nanostructures / Orthogonal / Dissipative / Biomolecular Sciences |
ページトップへ▲ |
Copyright(C) 2023 The Society of Polymer Science, Japan All Rights Reserved. |